

Question Paper Code: 80872

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

Fourth Semester

Automobile Engineering

MA 8452 - STATISTICS AND NUMERICAL METHODS

(Common to : Mechanical Engineering/Mechatronics Engineering/Production Engineering/Robotics and Automation)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Use of calculator and Statistical Tables is permitted.

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. What do you mean by the terms: Errors of Type I and Type II?
- 2. Write any four applications of Chi-square distribution in statistics.
- 3. State the model equation for a Randomized Block Design.
- 4. State the distinguishing feature of a 2×2 Factorial Design.
- 5. What is the drawback in Gauss-Elimination method? How will you rectify it?
- 6. Differentiate between Direct Method and Iteration Method for solving a linear system of equation.
- 7. Form the Newton's backward difference table for the following data.

8. Find $\frac{dy}{dx}$ at x = 50 from the following table data.

- 9. Find y(0.2) using Euler's method if $\frac{dy}{dx} = \log(x + y)$, y(0) = 2.
- 10. State Adam's-Bashforth predictor and corrector formula.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) Tests of fidelity and the selectivity of 190 radio receivers produced the results as shown below:

		Fidelity				
		Low Average High				
	Low	6	12	32		
Selectivity	Average	33	61	18		
	High	13	15	0		

Use 0.01 level of significance to test whether there is a relationship (dependence) between fidelity and selectivity.

Or

- (b) The annual salaries (in thousands of dollars) of 8 men in middle management at a given company are : 55.5, 64.8, 68.2, 70.2, 52.4, 56.8, 60.6, 72.5 while those for 6 women are : 56.2, 48.8, 58.4, 50.9, 60.2, 54.5. Let X and Y denote the salaries of the men and women respectively. Assuming normal distribution and equal standard deviation, test the null hypothesis $\mu_X = \mu_Y$ against the alternative hypothesis $\mu_X > \mu_Y$ at 5 percent level of significance.
- 12. (a) Connection the following table is a Latin square design of an experiment where the letters A, B, C and D represent 4 varieties of wheat, the rows T₁, T₂, T₃ and T₄ represent 4 different fertilizers and the columns account for 4 different years. The data in table are the yields for the 4 varieties of wheat measured in Kilograms per plot. It is assumed that the various sources of variation do not interact. Using a 0.05 level of significance, test the null hypothesis. There is no difference in the average yields of the 4 varieties of wheat.

Or

(b) An experiment was performed to judge the effect of 4 different fuels and 3 different types of launchers on the range of a certain rocket. Test on the basis of the following ranges in miles, whether there is a significant effect due to different in fuels and whether there is a significant effect due to differences in launchers. Perform a two way analysis of variance at 5% level of significance.

		Fuel				
	Land	1	2	3	4	
Launcher	1	45.9	57.6	52.2	41.7	
	2	46		50.1		
	3	45.7	56.9	55.3	48.1	

- 13. (a) (i) Using Gauss-Jordan Method, find the inverse of the matrix $\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. (8)
 - (ii) Apply Gauss–Seidal method to solve the equation 2x-3y+20z=25 20x+y-2z=17 3x+20y-z=-18.

Or

(b) Find all the eigen values and the corresponding eigen vectors of the following matrix by Jacobi's method.

$$A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$

14. (a) (i) Using Lagrange's interpolation formula, find the function f(x) from the following table: (8)

$$x$$
: 0 2 3 6 $f(x)$: 659 705 729 804

(ii) Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{1}{1+x+y} dx dy$ by Trapezoidal rule with h = 0.5 and k = 0.25 correct to three decimal places. (8)

Or

(b) (i) Using Newton's Backward difference interpolation polynomial, find y'(2.2) and y''(2.2) from the following Table: (8)

x: 1.4 1.6 1.8 2.0 2.2

y: 4.0552 4.9530 6.0496 7.3891 9.0250

- (ii) Apply Simpson's $\frac{1}{3}$ Rule to evaluate the integral $\int_{2}^{2.6} \int_{4}^{4.4} \frac{dxdy}{xy}$ with h = 0.2 and k = 0.3 correct to three decimal places. (8)
- 15. (a) Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2} \text{ with } y(0) = 1 \text{ at } x = 0.2, 0.4$

Or

(b) Find y(0.1), y(0.2), y(0.3) from $y' = x^2 - y$, y(0) = 1 by using Taylor's series method and hence obtain y(0.4) using Adam's—Bashforth method.